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ABSTRACT

User interface (UI) design is a difficult yet important task for ensur-
ing the usability, accessibility, and aesthetic qualities of applications.
In our paper, we develop a machine-learned model, UIClip, for as-
sessing the design quality and visual relevance of a UI given its
screenshot and natural language description. To train UIClip, we
used a combination of automated crawling, synthetic augmentation,
and human ratings to construct a large-scale dataset of UIs, collated
by description and ranked by design quality. Through training on
the dataset, UIClip implicitly learns properties of good and bad de-
signs by i) assigning a numerical score that represents a UI design’s
relevance and quality and ii) providing design suggestions. In an
evaluation that compared the outputs of UIClip and other baselines
to UIs rated by 12 human designers, we found that UIClip achieved
the highest agreement with ground-truth rankings. Finally, we
present three example applications that demonstrate how UIClip
can facilitate downstream applications that rely on instantaneous
assessment of UI design quality: i) UI code generation, ii) UI design
tips generation, and iii) quality-aware UI example search.
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1 INTRODUCTION

What makes a good user interface (UI)? It is hard to comprehen-
sively articulate what separates a good UI design from a bad one,
and the task of UI design is challenging even for experts with years
of training and practice. Guidelines exist that list some general
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principles [52, 67], but they are often insufficient or difficult to op-
erationalize, especially for novice designers. Because of this, many
application UIs today contain common design problems, which can
negatively impact usability, accessibility, and design aesthetics.

The most holistic method of evaluating UIs is usability testing,
which can uncover UI design flaws, accessibility problems, and
software bugs, but it is generally a time-consuming and costly
process. Approximate assessments, such as heuristic evaluation, rely
on experts applying a set of pre-defined principles to rapidly identify
potential problems and estimate overall UI quality. However, even
these abbreviated strategies can be difficult to employ consistently
or in the absence of a knowledgeable expert.

To this end, computational methods have been developed to
estimate the quality of UIs, taking into account factors such as
visual aesthetics [48], cognitive principles [54], and context [55].
Because of their automated nature, they unlock new opportunities
for UI design [70, 73] and evaluation [49]. However, most of these
prior computational approaches are limited. Some techniques apply
objectives and metrics inspired by cognitive principles [48, 54],
such as visual complexity, layout quality, and color harmony to UI
designs, but their outputs still require interpretation and cannot, for
example, be used to compare the quality of two candidate designs.
Other approaches are toolkits that learn user-specific models for
generating adaptive interfaces [16–18], and they also cannot be
applied to more generalized UI design tasks.

Our paper introduces a novel computational model, UIClip, that
estimates the design quality of any UI from its screenshot and a
textual description. Specifically, UIClip generates a numerical score
predicts two aspects of design quality: i) the presence of design
defects and ii) design preferences based on human rankings. UIClip
is based on the well-known CLIP vision-language model [58], and
it uses a natural language description of the UI coupled with a
screenshot to assign a numerical score that estimates design quality.
CLIP, by default, is not well-suited for judging UI quality and rele-
vance. Therefore, to train UIClip, we developed a novel technique
for synthetically generating a large-scale dataset of UIs ranked by
design quality. Our strategy takes existing UIs (e.g., web pages)
and intentionally introduces design defects by modifying style and
layout attributes. The process created pairs of original and “jittered”
interfaces and allowed the models to learn the differentiation be-
tween these pairs. We used this method to generate 2.3 million pairs
of UIs coupled with their quality-related descriptions. To align our
model with real-world design preferences, we collected 1.2K ratings
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from professional designers on an extra UI set. These ratings were
used to refine UIClip and validate the effectiveness of our model.

We benchmarked UIClip with other large vision-language mod-
els (LVLM) by evaluating them on a held-out set of UI screens. We
assess the models on three tasks, including design quality, improve-
ment suggestions, and design relevance. The results showed that
UIClip outperformed all other models in every task, despite being
smaller in size. Finally, to demonstrate the utility of UIClip, we
present three example applications that use our model to provide
different types of computational UI design assistance: i) quality-
aware UI code generation, ii) UI design suggestion generation, and
iii) quality-aware UI example retrieval.

To summarize, our work makes the following contributions:
(1) A large-scale dataset of UI designs and descriptions com-

prised of synthetic and human-generated design ratings.
(2) A computational model that scores UI screenshots based on

relevance to a textual description and design quality.
(3) Three example applications that demonstrate how UIClip

can be used to facilitate downstream applications: i) a tool
that improves the quality of UI code generated by LLMs,
ii) a tool that generates design recommendations for a UI
screenshot, and iii) a UI design search engine.

To facilitate research in this area, we plan to release all the
training code, data, and models.

2 RELATEDWORK

Our research builds upon existing work in UI design and evaluation
by encoding UI design quality into computational models, enabling
the models to serve as potential tools for UI design assessment. We
review the literature in three relevant areas: UI design tools, UI
evaluation, and machine learning-based quality metrics.

2.1 UI Design Tools

Embedding computational capabilities into UI design tools enables
machines to computationally assess the design thus empowering de-
signers to ideate, prototype, and iterate their work effectively. Early
research like SILK [35] and DENIM [50] introduced quick sketching
capabilities, making the design process more agile. Damask [43]
refined the creation process with its emphasis on pattern-based
design, enhancing UI component reusability. The evolution con-
tinued with Smart Templates [51], which provided designers with
adaptable frameworks that intelligently adjusted to their needs,
simplifying the design process. Sikuli [82] built upon the thread
of intelligent design tools by integrating image-based search func-
tionalities, making it easier for designers to find and incorporate
UI elements. As the field progressed, tools like Sketchplore [73]
and Scout [70] enabled designers to explore a wider array of design
alternatives, encouraging creativity. D.note [23] and Swire [27]
introduced interactive elements that incorporated user feedback
directly into the design, enhancing user-centric approaches. The
integration of deep learning into UI design tools marked a pivotal
shift, starting with the use of datasets like RICO [11] to inform
model training. For instance, GUIComp [37] is a tool that includes
an autoencoder trained on the large-scale UI dataset to help find
UI design examples for inspiration. In addition, the tool employed
convolutional neural networks to evaluate the visual complexity

of UI prototypes and pinpoint the main areas of interest. Similarly,
VINS [6] introduced a visual search framework powered by models
trained on a more diverse annotated UI dataset, enabling designers
to find similar visual UI designs across platforms. Our work builds
upon existing work in computational UI design tools by building
neural models to quantify UI design quality through language, and
integrate the models into various UI design applications.

2.2 UI Evaluation

Traditional UI evaluation, initially rooted in heuristic evaluation
and established guidelines [28, 53], has evolved significantly over
time. The development of automated metrics marked a transition to-
wards more objective and scalable UI assessments. Early work like
ARNAULD [17] collected user preferences about specific outcomes
to automatically learn and tailor a cost function for UI assessment
and adaptation. tLight [48] continued this vision and presented
eight automatic metrics for evaluating graphical user interfaces’
aesthetics, demonstrating their effectiveness on desktop and mobile
platforms. Progressing further, researchers also explored assessing
the visual complexity of mobile user interfaces, establishing met-
rics that link visual complexity to perceived usability [62]. This
shift underscores a growing emphasis on quantifying user inter-
face elements to predict usability outcomes. Moreover, integrating
cognitive principles into UI evaluation is gaining traction, with met-
rics now considering harmony and attractiveness, aligning with
how users perceive and organize visual information. For instance,
the Aalto Interface Metrics (AIM) service [54] demonstrates how
blending user perception and attention models can improve GUI
design evaluation. In recent developments, deep learning has been
employed to model user interaction aspects like tappability [65, 69]
and draggability [79], marking a shift towards using neural model-
ing to enhance our understanding of user behaviors. Furthermore,
with the rise of generative models, recent research applies Large
Language Models (LLMs) to provide UI design feedback [13], illus-
trating how combining design knowledge parameterized in large
pre-trained models with user input can be helpful for designers to
improve the visual UI design. Our research builds on these advance-
ments by linking UI design with quality-focused natural language
descriptions, leveraging language as a tool for retrieval and feed-
back in design.

2.3 Machine Learning-based Quality Metrics

Learning scoring functions has been an important topic in many
areas of machine learning. In the context of text-generation or ma-
chine translation, a popular class of text quality metrics involve the
use of “ground truth” responses known as “references.” BLEU [57]
and later variants like ROUGE [42] and Meteor [4] were developed
for other applications, such as summarization [19]. However, not
all domains have access to human-authored references, leading to
the development of "reference-free" metrics. Perplexity [29], for in-
stance, is a classic metric used to estimate how likely a piece of text,
often generated by a machine, is to come from a human-generated
corpus. More recently, direct human evaluations have been utilized
to assess model-generated text [84]. This type of evaluation system
often ask individuals to compare outputs from the same input text
to determine which model-generated version they prefer. In the
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realm of computer vision, numerous metrics have been devised
to evaluate the quality of images produced by models, including
the inception score [63], the Fréchet Inception Distance (FID) [25],
and more recently the HyPE scores [85]. Finally, there has been a
class of evaluation methods aimed at multi-modal applications that
concern both text and images. CLIPScore [24] is a technique for
assessing the quality of image captions by using the pre-trained
OpenAI CLIP model. CLIP-IQA [76] further adopts CLIP to con-
trastively learn a function that evaluates images based on various
quality attributes (e.g., brightness, colorfulness) and perceptual as-
pects (happy, scary). TIFA [26] introduces a method where it asks
and answers its own visual questions using large vision-language
models. It then quantifies how well the text prompts and the images
generated from those prompts align. In our paper, we show that
off-the-shelf vision-language models like CLIP often fall short in
accurately analyzing UI screenshots, particularly when assessing
UI design quality through language. To tackle this problem, we
introduce a comprehensive UI design quality dataset that integrates
both machine and human feedback. The collected data enables re-
searchers to build and iterate their computational models using this
quality-encoded dataset.

3 DATASETS FOR UI DESIGN QUALITY

While several UI datasets exist, they are annotated for other ap-
plications, such as element detection [6, 11], natural language de-
scription [75], and app categorization [39]. Although some prior
work has rated model-generated UI code [17, 68], to our knowledge,
no publicly available, large-scale dataset exists for UI design as-
sessment. To this end, we collected over 2.3 million UI screenshots,
each paired with natural language text that includes a caption, de-
sign quality, and design defects. Since it is prohibitively costly and
time-consuming to collect enough human-annotated data to train
deep learning models, the majority of our data (over 99.9%) is syn-
thetically generated, and a small set of human ratings is collected
from designers. We refer to our synthetically-generated dataset as
JitterWeb and our human-rated dataset as BetterApp.

3.1 Synthetic Data

JitterWeb is a synthetic dataset of 2.3 million examples created
through automated web crawling, data augmentation, and cap-
tioning. Recent research has shown that UIs on the web (e.g., web
pages), are a useful source of data for data-driven UI modeling,
due to the relative ease of applying automated crawling techniques
and extracting semantic metadata from the browser [34, 80]. The
main idea behind our synthetic data approach was to first visit an
existing web page and record its appearance (i.e., take a screenshot),
then randomly apply several jitter functions that are designed to
intentionally degrade the design quality of the web page in different,
controllable ways and record the resulting appearances (examples
shown in Figure 1). Jitter functions are implemented as snippets
of JavaScript code that, for example, add random noise to CSS at-
tributes or swap colors in the web page’s color palette. The result of
applying this process to a web page is one “original" sample paired
with several variations of itself, each with a set of known design
defects. While the jitter functions typically lead to negative changes,
as one would expect from randomly-adjusting ground-truth styles,

some might be neutral or even positive (i.e., label noise). Through
an informal inspection of 100 randomly selected jittered UIs, we
found that 9 had similar quality with “original” ones.

3.1.1 Data Collection. We followed the collection methodology of
WebUI [80], where a headless Chrome browser was used to visit
thousands of websites with different simulated client devices (e.g.,
mobile phone, desktop, tablet). It was not possible to directly re-use
the publicly-released WebUI data, which consists of screenshots
and extracted metadata, because our data augmentation pipeline
necessitates loading the website in a browser to run the jitter func-
tions, which are implemented as JavaScript code. Unlike the crawler
used in WebUI, we adopted a simpler architecture that directly
crawls URLs from publicly available datasets. We crawled nearly
300,000 web pages, using URLs from the MC4 dataset provided
by the Allen Institute for AI [12], which is an adaptation of the
original C4 dataset [60] frequently used to train large language
models [5, 10, 36, 74]. This dataset has undergone screening to
remove explicit content [12]. In addition, we excluded URLs that
resulted in 404 errors.

JitterWeb was randomly partitioned into training (80%), val-
idation (10%), and test (10%) splits by web page URL. We further
randomly selected 201 samples from the original test split, to make it
the same size as the test split from our human-rated data (BetterApp)
for model evaluation.

3.1.2 Jitter Functions. Jitter functions are JavaScript code snippets
that are used to controllably introduce design defects into web
pages. To design these functions, we reviewed various guidelines
on usability and design evaluation found in design textbooks [41,
67], online resources [20, 78], and published literature [46]. While
undoubtedly useful for informing application design, many of the
principles described in these resources could not be assessed by
looking at a single screenshot (e.g., “error prevention,” “user control
and freedom”). We ultimately chose theCRAP guidelines [77], which
are four general principles for UI visual design relevant to our task:
contrast, repetition, alignment, and proximity. We developed the
jitter functions based on a combination of these guidelines and
what is possible to programmatically adjust through JavaScript and
CSS styling.

Below, we describe the functions that we implemented and the
CRAP principles that inspired them:

• Colors
– Color Swap (contrast, repetition) - Randomly swaps the
colors of elements on the web page

– Color Noise (contrast, repetition) - Adds numerical noise
to CSS attributes for RGB values

• Font
– Font Size (contrast, repetition) - Randomly swaps the font
sizes of text elements in the page (e.g., swapping the size
of subheading text with the size of body text)

– Text Noise (contrast, repetition) - Adds numerical noise
to CSS attributes for text size

• Contrast
– Text Color (contrast) - The contrast of text is decreased so
that it appears closer to its container’s color
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Figure 1: Our synthetic dataset was comprised of UIs that were processed by jitter functions to introduce design defects. In

this figure, we visualize the effect of each jitter function independently, although up to three jitter functions can be applied

simultaneously. Our crawler captures screenshots for multiple devices (desktop, tablet, andmobile), but due to space constraints,

we only show rendered mobile examples.

– Background Color (contrast) - Makes the background color
of containers containing text closer to the color of the text.

• Spacing (alignment, proximity) - Adds numerical noise to
CSS attributes for margin and padding

• Complexity (contrast, repetition, alignment, proximity) -
Randomly removes images, text, and other element styling

• Layout (alignment, proximity) - Modifies CSS related to ele-
ment layout such as flow (e.g., horizontal or vertical).

The jitter functions are composable, and when the crawler visits
a web page, it chooses up to three functions via uniform random
sampling to apply sequentially before taking a screenshot of the
jittered UI. Figure 1 shows an example of a web page processed by
each of our jitter functions.

3.1.3 Description Generation. Each UI screenshot was associated
with a natural language description that includes a caption, design
quality, and a list of design defects (inferred from the applied jit-
ter functions). The full description is formatted by concatenating
multiple components: i) a constant prefix (“ui screenshot."), ii) a
design quality tag (“poor design" if the screen has been jittered,
otherwise “well-designed"), iii) a list of design defects (e.g., if the
“text contrast” jitter function was applied, a suggestion would be
“bad text contrast”), and iv) a caption describing the screenshot.
Figure 2 provides a visual illustration of this process.

The design-related components are inferred from the jittering
process. To generate the caption, we used a set of pre-trainedmodels

to predict [38, 75], then paraphrase [30] a caption from the UI
screenshot. In the generation process, we specifically avoided the
use of models with restrictive usage agreements or trained using
data from models with restrictive usage agreements 1. Because the
introduction of design defects by jitter functions may affect the
accuracy of the captioning model, we generate the caption for each
original UI, and then propagate the caption to all its variations.

3.2 Human-rated Data

While our synthetic approach to automatically generating pairs of
design preferences can be efficiently scaled to millions of screen-
shots, it also has drawbacks. In the synthetic dataset, preferences
are only generated between variations of the same screen, which
does not reflect comparison between independent designs. While
we used established design principles to author jitter functions, they
may not represent the actual distribution of design flaws across
real-world apps, e.g., small element margins may be a very common
problem “in-the-wild" but is only represented in one of our heuris-
tics. Finally, a part of the creation process for the synthetic dataset
involves using a pre-trained UI screenshot captioning model for
caption generation. This model may produce incorrect captions
that limit a downstream model’s ability to understand UI design
relevance. To this end, we collected the BetterApp dataset using

1The terms of service of proprietary model providers such as OpenAI, Llama, and
Claude prohibit using their model outputs to train other models. Therefore we avoid
them and also other “distilled” models trained on their output.
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Figure 2: Our process for generating text descriptions for Jit-

terWeb. Based on a set of randomly-chosen jitter functions,

several design defects are introduced, e.g., color swap, color

noise, font swap. These design defects are recorded as a part

of the jittered UI’s caption, which helps our model associate

design defects with the UI screenshot.

feedback from human designers. BetterApp addresses the draw-
backs of synthetic data by i) comparing UI screens from different
apps, ii) collecting design defects from real apps, and iii) using
human-improved UI captions.

As a starting point, we used an existing public dataset called
VINS [6], which contains screenshots of iOS apps, Android apps,
design mockups, and lower-fidelity design artifacts such as wire-
frames. Because it was originally used for design search and element
detection applications, the VINS dataset contains screenshot im-
ages and element annotations. For our application, we only use
the screenshot images and not the lower-fidelity wireframes. In
addition to VINS data, we also included screenshots of UIs rendered
by an open large-language model [31] prompted to generate HTML
code given natural language descriptions in our dataset. We hypoth-
esized that these samples would contain more variation in design
quality and more design defects, which could be useful for learning
design quality.

To prepare the data for our rating procedure, we applied several
additional processing steps. We first applied the same automated
captioning model [38] used to construct synthetic examples to
assign an initial caption to each dataset in VINS. These captions
were later improved by participants. We used a pre-trained sentence
embedding model [61] to generate a fixed-size embedding for each
screen based on its auto-generated caption. Finally, we applied the
DBSCAN clustering algorithm [14] to group together screenshots
with similar captions. As a result of this process, the screenshots
are collated so that screens of similar functionality can be found in
the same cluster (e.g., all login screens). We clustered the VINS and
synthetic examples separately, so clusters are only made entirely
of either real-world or synthetic UIs. Designers were then asked
through pairwise comparisons to assign relative rankings between
UI screens in the same cluster.

3.2.1 Designer Rating Procedure. We recruited 12 designers (ages
20-32, 11 female and 1 male) as participants at a university with
varying levels of experience through word of mouth. The partici-
pants had varying backgrounds. Some had up to 8 years of industry

Figure 3: A screenshot of the application used for collecting

human design ratings. Participants first decide whether the

pair of screenshots can be described by a single caption (A).

If possible, an improved caption is authored (B). Participants

select one option that better matches the caption (C) and

provide their reasons for doing so (D).

experience in UI/UX design. Others had more informal experience,
but all were enrolled or had taken graduate-level courses focused on
the design and implementation of UIs. Participants spent around 1.5
hours rating UI screenshots, with the goal of reaching at least 100
screenshots. Participants were compensated $10 per hour (rounded
up) for their time.

Participants were first asked to review an online resource that
describes and provides examples of the CRAP visual design princi-
ples [32]. Participant ratings were collected using a custom-built
web application (Figure 3). The start page of the application dis-
played instructions and recorded a visitor ID, which allowed analy-
sis of rating consistency.

Following the start page, the web application repeatedly i) selects
a random cluster from the processed data then ii) randomly selects
two UIs from within the cluster to display. The participant was then
asked to do the following steps:

(1) Write a short, one-sentence caption that contains enough
detail to describe both screenshots. If one of the screenshots
is irrelevant (e.g., due to clustering error), write a caption for
the first screenshot.

(2) Provide a relative ranking between the two screenshots given
the options “A is better” or “B is better.”

(3) Select all relevant CRAP principles that were important in de-
termining the ranking, unless “about the same” was selected
in the prior step.

In total, we collected around 1200 ratings from all participants.
We ignored pairs that could not be described by a single caption,
which led to 892 rating pairs. To measure inter-rater reliability
(IRR), we initially had each participant evaluate the same set of 10
predetermined pairs. Afterward, the rating pairs were distributed
randomly. We used this initial set to compute Krippendorff’s alpha
score, with 𝛼 = 0.37. We discuss the factors influencing these
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ratings in Section 7.2, attributing the variation to the task’s inherent
subjectivity and variable individual preferences, such as familiarity
with Android or iOS apps.

Similar to our synthetic generation approach, responses from
each step are used to construct different parts of each UI screen-
shot’s text description. The human-authored or human-refined
caption from step 1 is used to improve the original auto-generated
one. The relative ranking from step 2 is used to infer the correct
design-quality tag, where the preferred example is assigned “well-
designed” and the other is assigned “poor design.” The selected
principles from step 3 are used to construct a set of design defects
for the non-preferred screenshot. For example, if a participant se-
lected the contrast principle as a reason for choosing A over B, then
“bad contrast” is added to the generated description of B. Note that
the same screenshot can appear in more than one randomly sam-
pled pair, which could result in conflicting descriptions e.g., if it was
preferred in one round but not in another. Our training algorithm
is robust to these collisions and over time learns to approximate a
score based on the proportion of times it was preferred.

To generate BetterApp training (70%), validation (10%), and test
(20%) splits, we randomly partitioned the UI clusters, which ensured
that both UI screenshots from rated pairs always occurred within
the same split. We chose the split percentages for BetterApp so
that the size of the test set is roughly equivalent in size to other
popular model benchmarks [7]. The final sizes of the splits were:
train (618 pairs), validation (73 pairs), and test (201 pairs).

4 UICLIP

We used the JitterWeb and BetterApp datasets to train a compu-
tational model UIClip, that assesses UI designs from screenshots.
While our datasets could be applied to train anymodel, such as large
vision-language models [3, 44] that typically include the language
decoder from an LLM, we adopted the CLIP architecture [58] as it
is designed to produce a numerical score, which is similar to our
objective of scoring designs. Specifically, our model accepts two in-
puts: i) an image (e.g., screenshot) of a UI and ii) textual description.
The model produces a single numerical output, which represents a
combined assessment of design relevance and quality. In addition,
while much of our training dataset contains HTML code, we chose
to focus on UI appearance (i.e., image input) rather than source code
because it allowed our model to be more universally applicable,
regardless of underlying toolkit implementation.

UIClip is based on OpenAI’s CLIP B/32, which contains 151 mil-
lion parameters. CLIP B/32 is a dual-encoder transformer model (i.e.,
consisting of an image and text encoder) that accepts i) a textual de-
scription and ii) an image as inputs, then encodes both into a shared
embedding space. The image encoder is a vision transformer that
accepts a fixed-size 224x224 image as input, splits it up into 32x32
pixel patches, and then encodes the patches into a 512-dimensional
embedding. The text encoder is a transformer that accepts text
sequences of up to 77 tokens (each token roughly corresponds to a
word) and also produces a 512-dimensional embedding. The outputs
of these two encoders are often used to produce a single numeri-
cal value, which is computed as the dot product of the image and
text embeddings. CLIP’s dot product output can be interpreted in
many ways, with a common one being the semantic similarity of

the two inputs e.g., the text “a dog” and an image of a dog would
produce a high score. CLIP was trained on roughly 400 million
pairs of images and text captions scraped from the internet, which
it used to learn these semantic associations. While CLIP is often
successful in general image classification or association tasks, these
internet crawls often lack data for more domain-specific tasks such
as understanding images taken by satellites, autonomous vehicles,
and medical images [58]. As we show in our baseline evaluation,
CLIP also performs poorly on UI screenshots, which are relatively
rare in the model’s original training data.

The purpose of our training procedure is to finetune the CLIP
B/32 to i) improve relevance scoring among UI screenshots and de-
scriptions and ii) incorporate design quality as a factor in the score,
and iii) associate descriptions of design defects with screenshots of
UIs that contain them. We refer to our model as UIClip, since it is a
descendant of CLIP that is optimized for UIs.

4.1 Training

We trained UIClip in four stages that incorporated different data
sources and training objectives, which were designed for different
use cases and tasks. In the first training stage, which we refer to
as “pre-training," we trained UIClip using the JitterWeb dataset
and the same training objective used in the original CLIP imple-
mentation [58]. We found this useful for applications related to
retrieval and associating UI screenshots with relevant descriptions.
In the second stage, we switched UIClip’s training objective to an
alternative loss function that specifically focuses on distinguishing
good from bad UI designs. These two stages are then repeated for
the BetterApp dataset, where each stage uses model weights from
the previous stage as a starting point. During all stages of training,
we adopt a pre-processing methodology similar to the one used
in the original CLIP paper [58] and subsequent reproductions [8],
where a random-crop strategy is used to capture different parts of
UI screenshots.

4.1.1 CLIP Pretraining Objective. During the pre-training stage,
we used the same training objective as the base CLIP model [58],
which is described by Equation 1.

L𝐶𝐿𝐼𝑃 = −
∑︁
𝑖

ln
𝑒𝑣𝑖 ·𝑤𝑖∑
𝑗 𝑒

𝑣𝑖 ·𝑤𝑗
−
∑︁
𝑗

ln
𝑒𝑣𝑗 ·𝑤𝑗∑
𝑖 𝑒

𝑣𝑖 ·𝑤𝑗
(1)

Where, 𝑤𝑖 refers to the 𝑖-th text embedding in the batch and 𝑣 𝑗
refers to the 𝑗-th image embedding in the batch.

To give a high-level overview of the process, this training objec-
tive involves repeatedly sampling a minibatch of 𝑁 examples from
the training dataset, where each example consists of an image (UI
screenshot) and a textual description (caption with a design quality
tag and applied jitters). The model generates embeddings for all
text 𝑤1...𝑁 and images 𝑣1...𝑁 in the minibatch, then computes an
𝑁𝑥𝑁 similarity matrix between all combinations of images and
text. The objective then computes the cross entropy loss to match
each image with its original text description, and vice versa. The
intuition behind this process is that the representations of corre-
sponding images and text will gradually become more similar in the
shared embedding space, while mismatched pairs will be pushed
apart. In the case of UIClip, screenshots will be matched to textual
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descriptions containing the appropriate design quality tag, design
suggestions, and caption.

4.1.2 Pairwise Contrastive Objective. A drawback of the standard
CLIP objective is that the minibatches used to compute its loss are
randomly sampled from the entire training dataset. Because the
size of a minibatch is much smaller than the size of the entire train-
ing dataset, there is very low chance that a minibatch will contain
examples of closely-related UI screenshots e.g., both a jittered and
non-jittered version of a webpage. We hypothesized that this would
make it more difficult for the model to learn relationships between
these related UIs, which is necessary for assessing the relative qual-
ity of related designs. Therefore, we modified the training objective
to explicitly compare pairs of related UI screens. Our method is
similar to previous methods for pairwise contrastive learning [22],
but we use a cross-entropy loss, which is more compatible with the
pre-training objective, instead of the margin-based one.

This training objective, shown in Equation 2, trains the model
so that the embedding of the preferred screenshot has a higher
dot product with a text description indicating good design (i.e., a
design quality tag of “well-designed”) than the embedding of the
non-preferred screenshot.

L𝑝𝑎𝑖𝑟 = − ln
𝑒𝑣

+ ·𝑤+

𝑒𝑣
+ ·𝑤+ + 𝑒𝑣

− ·𝑤+ (2)

Where 𝑣+ refers to the embedding of the preferred screenshot, 𝑣−
is the embedding of the non-preferred screenshot, and 𝑤+ is the
embedding of the text description.

4.2 Inference

4.2.1 Preprocessing. CLIP has a fixed image input size of 224x224
pixels, which presents challenges for encoding UI screenshots dur-
ing inference given that many mobile apps are designed with high
height-to-width aspect ratios and dimensions can vary significantly
between UIs captured on different devices. Naive pre-processing
methods such as image scaling or image cropping can result in
significant distortion or exclude important information. One way
to address this is to make architectural changes to the model, using
similar strategies to previous work [38]. We adopt a simpler strat-
egy to handle variable image sizes using a sliding window strategy.
The input screenshot is first resized so that its smaller dimension
is equal to 224 pixels. A 224x224 window slides across the larger
dimension of size 𝑑 where the number of evenly-spaced steps is
equal to ⌊ 𝑑

224 ⌋ + 1, so that the entire image is covered with the
minimal amount of overlapped area. The image encoder is used
to compute an embedding for each window of the screenshot, and
then all embeddings are averaged together.

4.2.2 UIClip Score. The UIClip score represents a combination of
the relevance of the text description and the UI screenshot and the
design quality of the UI screenshot. Computing the UIClip score
requires i) a screenshot of the UI to be evaluated and ii) a user-
provided caption describing the intended purpose of the UI. A full
textual description is constructed by pre-pending a prefix “ui screen-
shot. well-designed. " to the user-provided caption. The resulting
score between the encoded screenshot and the encoded full de-
scription represents a score that describes how well the screenshot
adheres to a “well-designed" UI with the target caption.

4.2.3 Design Suggestions. During training, UIClip learns to asso-
ciate screenshots with with natural language descriptions contain-
ing design defects that are potentially contained within them. How-
ever, because UIClip doesn’t contain a decoder network, it cannot
directly generate text like other auto-regressive transformers [59].

Instead, we develop an alternative approach that uses UIClip
to detect possible design defects in an input screenshot, then sur-
faces them as warnings to the user to fix. For each possible defect,
a natural language description is constructed by pre-pending the
corresponding prefix to the caption, e.g., “ui screenshot. poor de-
sign. bad text sizing. login screen.” We consider all design defects
introduced by our jitter function (e.g., “bad text sizing”) and the four
CRAP principles (e.g., “bad alignment”). We computed the similarity
score between the input image and these text descriptions that cor-
responded to design defects. To determine the design defects that
are surfaced, we dynamically compute a threshold. The threshold is
computed as the image’s similarity score with a caption without any
defect tags, e.g., “ui screenshot. poor design. login screen.” Design
suggestions can also be limited to a smaller number of categories
(e.g., only the four CRAP principles) through pre-defined mappings.
For example, since the color noise jitter could affect both contrast
and repetition, we map “bad color choice” to warnings for these
classes.

5 EVALUATION

The purpose of our evaluation is to quantify multiple aspects of
UIClip’s design assessment capabilities and to compare its perfor-
mance against several state-of-the-art baseline models and ablation
conditions. We focused on tasks that correspond to three use-cases:
i) design quality assessment, ii) design suggestion generation, and
iii) design relevance. In all three tasks, UIClip outperformed baseline
models that are several orders of magnitude larger.

5.1 Procedure

We conducted a quantitative evaluation that measured model per-
formance using held-out examples from our datasets.

5.1.1 Baselines. We chose several baselines that consist of differ-
ent types of multimodal machine-learning models. Originally, we
planned to include AIM [54], which is a software package for com-
puting various metrics for UIs. However, there is no definitive way
to convert these metrics into design ratings, so we excluded it as a
baseline. Therefore, we limit our analysis to the machine-learned
models described below.

• Proprietary Large Vision-Language Models (only ac-

cessible via APIs)

– OpenAI GPT-4V - GPT-4V is a model developed by OpenAI
that has been shown to excel at a variety of tasks [1].

– Anthropic Claude-3-Opus - Claude-3-Opus is a model that
was introduced by Anthropic at March 2024. It is the
largest andmost powerful variant among the three Claude-
3 models [2].

– Google Gemini-1.0-Pro - Google Gemini-1.0-Pro (Vision)
is a model that was introduced by Google in December
2023 [72]. It’s the most powerful publicly available model
among the three Gemini-1.0 models (Gemini-1.0-Ultra was
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Figure 4: Model performance on design choice prediction, which involves identifying the preferred UI screenshot from a pair.

UIClip models (with bold font) perform the best on held-out human-rated pairs from BetterApp and synthetically-generated

pairs from JitterWeb. Most baselines perform poorly, around the level of random chance.

announced but not publicly available at the time we per-
formed this benchmarking).

• Open-source Large Vision-Language Models (model

weights are publicly available)

– LLaVA-1.6-13B - LLaVA [45] is a model that was trained
using a combination of training examples generated by
proprietary large language and vision-language models as
well as publicly available visual reasoning and image cap-
tion datasets. We used the 13B model (with ViT-L/14 [83]
as the vision encoder and Vicuna-13B [9] as the language
decoder) as one of our baselines, which is the largest model
that we could fit on our GPU hardware.

– Qwen-VL-Chat-7B - Qwen-VL-Chat [3] is similar to LLaVA,
but it was trained using an alternative pre-training objec-
tive and datasets. This model (with ViT-bigG [15] as the
vision encoder and Qwen-7B [3] as the language decoder)
is notable because its pre-training data contained images
of documents, which we hypothesized could be relevant
for understanding UIs as well.

• CLIP Models

– CLIP B/32 - We used the unmodified CLIP B/32 model,
which was trained by OpenAI on 400M image-text pairs
known as the WebImageText dataset.

– MetaCLIP H/12 - Recent research has focused on improving
the performance of CLIP models by scaling model size [8]
and curating larger and higher-quality multi-modal train-
ing datasets [15]. MetaCLIP H/12 is a recent model to
achieve state-of-the-art performance for CLIP-like models.
It is roughly 6 times larger than CLIP B/32 and was trained
on roughly 6 times more data [81].

• CLIP Models with Alternative Data

– CLIP B/32 + Screen2Words - We trained CLIP B/32 on the
largest (to our knowledge) publicly-released dataset of UI
screenshots pairedwith human-authored natural language
captions using the default CLIP training objective.

– CLIP B/32 + non-jittered websites - We trained CLIP B/32
on only non-jittered websites from JitterWeb using the
default CLIP training objective.

• UIClip

– CLIP B/32 + jittered websites - We trained CLIP B/32 on
all data from JitterWeb using the default CLIP training
objective.

– CLIP B/32 + jittered websites + web pairs - We trained CLIP
B/32 on all data from JitterWeb using both the default
CLIP objective and the paired contrastive objective.

– CLIP B/32 + jittered websites + web pairs + human pairs -
This model consists of CLIP B/32 trained on JitterWeb
and BetterApp using both the default CLIP objective and
the paired contrastive objective.

5.1.2 Model Inference. LVLM models rely on a natural-language
prompt to instruct them on how to process the image input. We
constructed a prompt that asked the model to use the CRAP princi-
ples to choose the better design of two UI screenshots and provide
the most relevant CRAP principles for its decision. We provided the
model with the same short description of the CRAP principles we
gave our designers who rated the BetterApp dataset. Since some
models could only accept one image input, we concatenated two UI
screenshots side by side into a single image. In preliminary tests,
we verified that all models could distinguish the inputs by asking
them to describe the left and right screenshots of the input image.

We iterated through several versions of prompts which included
well-known strategies for eliciting step-by-step reasoning [33]. We
chose the best natural language prompt from our tests and used it
for all models. The format of the prompt is provided in the appendix
(We also included an example of GPT-4V’s output when accessed
through the web interface in Figure 6, with a slightly modified
prompt that allowed it to provide additional reasoning). We used
the default parameters (e.g., temperature and top-p) for all the
LVLMs we compared. UIClip and other CLIP-based models used
the inference strategies described in Section 4.2.
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Figure 5: Model performance on design suggestion prediction, which involves generating design suggestions for a UI based on

detected design flaws. We used the macro-averaged F1 score to measure performance across four CRAP principles. In addition,

we introduce a choice-adjusted metric that ignores generated suggestions if they led to the incorrect choice. Using both metrics,

UIClip models (with bold font) perform the best on held-out pairs from BetterApp and JitterWeb.

5.2 Results

We focused on evaluating three aspects of design assessment: i) UI
design quality assessment, ii) design suggestion generation, and iii)
design relevance.

5.2.1 Design Quality. We evaluated a model’s design quality as-
sessment by measuring its accuracy in identifying the “preferred”
UI from an example pair. The results of our experiments are shown
in Figure 4.

In general, design quality assessment is a difficult task for all
tested models, especially when evaluating human-rated pairs of
real app screens. Our results are shown in Figure 5. For both Bet-
terApp and JitterWeb, the UIClip variant trained with web pairs
performed the best, with an average overall accuracy of 75.12%. In
particular, we see large improvements in detecting design defects
in web pages (87.1%), which is what the majority of the training
process and data focused on.

These improvements are notable because CLIP B/32, which was
the base model of all UIClip variants, performed the worst out of
all baselines. CLIP B/32 performed especially poorly for jittered
websites, where a further analysis revealed it erroneously associ-
ated certain types of jitters (e.g., dark, unreadable backgrounds)
with better design. This suggests that our training procedure and
data are effective for learning design quality, especially when com-
pared to other publicly available sources of captioned UIs (e.g.,
Screen2Words) or general-purpose multi-modal data (e.g., Meta-
CLIP H/12).

Incorporating human ratings appeared to lead to slightly de-
graded performance (overall accuracy of 73.88%), possibly due to
insufficient data. As noted previously, the UIClip with CLIP pre-
training objective alone was less effective at improving design
quality assessment capabilities because paired UI examples are of-
ten not found in randomly sampled minibatches. Nevertheless, it
had the third-highest overall accuracy of 65.42%.

Despite their much larger size, all LVLMs performed very poorly
on design quality assessment, often around the level of random

guessing. Interestingly, GPT-4V (overall 51.58%) refused to provide
a response for around 10% of examples, stating “I’m sorry, I can’t
help you with that.” In this regard, open models such as LLaVA
performed better than GPT-4V, even though LLaVA was trained by
distilling GPT-4V output. However, since LLaVA was not trained to
refuse requests [44], it ended up with a higher overall performance
for design choice prediction (with 54.59% prediction accuracy).

Figure 6: An example of incorrect design assessment and

reasoning from GPT-4V. We asked GPT-4V to compare two

screenshots. We fed in the same prompt used in our baseline

evaluation, except in this case, we allowed GPT-4V to list

its reasoning. The screenshot on the right is the original

application screenshot. The screenshot left is a variation of

the same interface with a design defect where the text is too

large and overflows, affecting readability and coherence. GPT-

4V erroneously states the left screenshot is better designed

and provides irrelevant and incorrect reasoning.

5.2.2 Design Suggestions. We evaluated all models’ design sugges-
tion capabilities by comparing the model-generated output to the
CRAP principles selected by designers when rating UI quality in
BetterApp. There were four possible CRAP principles that could
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have been chosen for each comparison, which we formulate as a
multi-label classification problem with four labels. Since design-
ers were allowed to omit reasoning for comparisons, we ignored
comparisons where none of the CRAP principles were selected.

Again, design suggestion was a challenging task for all tested
models. Some LVLM baselines listed all four CRAP principles for
almost every single example, despite being prompted to only choose
the most relevant principles. This appears to be consistent with
prior work on using LLMs for heuristic evaluation [13], where
similar models often provided a large number of irrelevant design
suggestions.

In our case, this phenomena led to artificially high recall for mod-
els such as Gemini (87.11% recall) and GPT-4V (84.57% recall). Thus,
we introduced a choice-adjusted F1 metric that ignored models’ de-
sign suggestions if it led to choosing the wrong preferred UI, i.e.,
right reasoning but wrong answer. This lowered all models’ recall
to more realistic levels, e.g., Gemini’s recall was lowered to 49.17%
and GPT-4V was lowered to 46.58%. Some open LVLM baselines,
such as Qwen-VL-Chat, also had trouble following our prompt and
often ignored instructions that asked them to provide reasoning
for their answers.

Under both methods of calculation, UIClip variants had the best
performance, with the web pre-trained variant performing the best
when all examples were considered and the full UIClip variant
performing the best when adjusted for choice accuracy.

CLIP variants that were trained on other sources of data did not
achieve high performance, since their training data did not include
information about present design defects that would help them
make suggestions.

5.2.3 Design Relevance. Finally, we also evaluated a model’s ability
to compute UI relevance, which is useful for assessing designs and
for various applications that require example retrieval [6, 27].

To measure UI relevance, we adopted a metric commonly used
in information retrieval known as mean reciprocal rank (MRR). An
embedding is computed for the preferred screenshot in BetterApp
and JitterWeb. For each description in the evaluation set, we ap-
pended the prefix “ui screenshot. well designed. " and computed
its text embedding. The text embedding is used the calculate sim-
ilarity scores with all screenshots, which is used to sort them in
descending order (i.e., highest similarity first). The rank of the first
element with the same description was recorded. Since a lower rank
is desirable (indicating higher similarity with the corresponding
image), MRR (higher is better) is computed as the average of all re-
ciprocal ranks. A higher MRR indicates better retrieval performance.
Because there is no straightforward way to generate rankings from
LVLMs, we only evaluate models based on the CLIP architecture.

The results of our retrieval evaluation are shown in Table 1.
The variant of UIClip pretrained on JitterWeb using the default
CLIP objective achieves the highest MRR score for both BetterApp
(0.3851) and JitterWeb (0.4085). UIClip variants trained using
pairwise loss were the worst performers, with MRRs lower than
the original CLIP B/32 base model, because the objective focuses
on the design-comparison task. In our discussion, we provide more
detailed reasoning for this phenomenon.

Table 1: Model Performance on UI Retrieval for both Better-

App and JitterWeb datasets. The variant of UIClip trained

with the CLIP pretraining objective (i.e., without paired data)

performed the best, while other variants of UIClip had poor

performance, due to the pairwise objective’s high prioritiza-

tion of design choice accuracy.

Model MRR (BetterApp) MRR (JitterWeb)

MetaCLIP H/12 0.2722 0.2350
CLIP B/32 0.2534 0.1466
CLIP B/32 + Screen2Words 0.2938 0.1130
CLIP B/32 + Web 0.3467 0.3766
CLIP B/32 + Jit. Web 0.3851 0.4085

CLIP B/32 + Jit. Web + Web Pairs 0.0962 0.0924
CLIP B/32 + Jit. Web + Web Pairs + Human 0.1096 0.1214

Nevertheless, our evaluation still shows that our datasets are
useful for learning design relevance, especially when training objec-
tives are closely aligned. For example, applying the CLIP objective
to JitterWeb is much more effective than alternate data sources
and nearly doubles (0.2000 → 0.3968) the overall retrieval perfor-
mance of the base CLIP B/32 model.

6 EXAMPLE APPLICATIONS

Based on the three capabilities of UIClip that we evaluated, we
present a suite of example applications that illustrate how common
user-facing design tools can be enhanced with our model.

6.1 Improving UI Code Generation

Figure 7: UI Generation Example Application. UIClip is used

to rank rendered UI code provided by an external LLM. The

user can describe a UI (A) and compares different LLM-

generated results (B). We ranked these options based on

UIClip’s scores and displayed them alongside the rendered

screenshot (C). Note that UIClip ranked the first screenshot

on the left as the highest quality (D), while we received the

third screenshot from the left as the first choice output from

our LLM (E).

We built a web application that allows users to generate rendered
UI screenshots from a natural language description of a UI. To use
the interface (Figure 7), users enter their descriptions in a textbox,
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which is formulated in a prompt. The prompt is fed into an external
LLM (e.g.,OpenAI GPT-3.5, Mixtral), which generates web code
(HTML/CSS) using the description. We sampled 𝑛 = 5 different
outputs and rendered each into a screenshot using the script that
programmatically controlled a browser. If the web code referenced
external images, we replaced them with a placeholder image to
render. Screenshotswere fed into UIClip andwere scored against the
input prompt. The screenshot of the results ranked in descending
score order is returned to the user.

This is a simple example of how UIClip could be used to improve
the output of generative models, most similar to existing “best-
of-n sampling” approaches. The method can also be incorporated
into the additional vision checkup [66] and used for feedback in
self-improving generative model outputs [47]. Our technique is
simple to implement and does not require access to the underlying
model’s weights; however, it is computationally expensive during
inference because multiple candidate solutions must be generated.
If model weights are available, this process could be further im-
proved by applying UIClip’s filtering during the training process
of generative models, or if UIClip was used as a reward model in
reinforcement learning fine-tuning approaches [21, 56]. We leave
these investigations to future work.

6.2 UI Design Tips

Figure 8: UI Design Tips Example Application. We use our de-

sign suggestion generation algorithm to generate design sug-

gestions from a user-provided description and user-uploaded

UI screenshot. This example shows suggestions to improve

the readability of text and color choice for the application.

We built a tool that allows users to upload screenshots of UI
designs to generate design tips using our model’s design suggestion
capabilities. We developed a web application (Figure 8) that allows
users to upload a screenshot of an app or UI design, and our system
generates tips that are surfaced to the user, although a similar idea
could be better integrated into, for example, UI design applications
for improved ease-of-use. One limitation of our current application
is that it might suggest improving text contrast, but it is unable to
provide additional information for which part of the UI led to the
recommendation. This is due to our problem formulation that pairs
descriptions with entire screenshots and doesn’t contain location
information. Future improvements can help address this by collect-
ing the relevant data and incorporating that into text descriptions,

or by sliding a smaller window across the UI screenshot and associ-
ating generated design suggestions to the location of the window.
We leave these additional features to future work.

6.3 UI Example Retrieval

Figure 9: UI Example Retrieval Example Application. In this

use case, the designer searches for examples of login screens

queried from a set of LLM-generated UIs, many of which

have design flaws. While both UIClip and CLIP B/32 gives

a diverse range of applications, we see that there are more

design flaws present from CLIP B/32. Some screens exhibit

poor color contrast (A) which may imply that the component

is disabled, duplicate elements (B) that can confuse end users,

and overall poor formatting and overflow layouts (C).

UI design search has been explored by many prior works [6, 11,
34], and it has the potential to accelerate the design process by
providing relevant examples that designers use to seek inspiration
during early phases of the design process. Existing systems built
for UI example retrieval have focused on querying and indexing UI
screenshots by their layout (e.g., to support finding designs similar
to an exemplar) or captions (e.g., to support natural-language or
free-form search). Since UIClip contains both an image and text en-
coder, it is possible to support both of these use cases, although our
example application focuses on handling text-based queries. Our
application uses a similar procedure to our UI relevance evaluation,
where model-computed embeddings are used to retrieve and sort
screenshots based on the user’s query. UIClip’s score can take into
account both the relevance and quality of retrieved examples, and
we incorporate a negative prompt that biases the query vector away
from simple or ambiguous designs [64].

We built a web application that contains a search box where
the user enters their query. Figure 9 shows examples of screens
retrieved for a set of queries indexed by UIClip and the vanilla CLIP
model.

7 DISCUSSION

Our experiments and example applications show that UIClip’s de-
sign assessment capabilities can improve many machine-assisted
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design tools. In this section, we discuss UIClip’s implications, limi-
tations, and directions for future work.

7.1 Data-driven Learning of UI Design

Our paper introduces techniques for machine-learning a generalized
scoring function (c.f. personalized functions [17]) that quantifies
aspects UI design. We discuss our work’s data and algorithm con-
tributions.

We hypothesized that a large volume of data (millions of exam-
ples) is important for effectively learning to assess designs, similar
to how seasoned human designers develop their intuition through
years of experience. This hypothesis was largely supported by
our experimental results. We showed the substantial benefits of
training on our large-scale dataset of UI designs, leading to improve-
ments over alternate datasets (e.g., Screen2Words [75]) that more
human-authored descriptions but fewer overall samples. When we
incorporated our own human-rated BetterApp dataset, we found
that in most cases, it did not result in substantial changes, most
likely due to insufficient data volume.

At the same time, dataset size alone is not enough to ensure
good design assessment performance. For example, MetaCLIP H/12
was trained on a total of 2.5 billion pairs. Our paper introduces
training objectives targeted at different aspects of design quality.
We employed two objectives for training UIClip, a batch-wise con-
trastive objective (i.e., CLIP’s pretraining objective) and a pairwise
contrastive objective, designed specifically for quality comparisons.
Based on our results, the pairwise objective represents a tradeoff
where it achieves higher focus on design-comparison tasks by fo-
cusing on pairs of relevant screens but incurs a penalty on retrieval-
related tasks, since it is not trained to distinguish irrelevant exam-
ples from a diverse minibatch.We leave further investigation of how
to optimally combine these two training objectives to future work;
although given the relatively small size of our model, we believe it
would be feasible to use different variations for application-specific
scenarios.

7.2 Formulating UI Design Quality

UIClip’s current model architecture is designed around the assump-
tion that design quality can be represented by a numerical score.
However, there are many nuances that cannot be captured by this
formulation.

Within the context of our collected data, we distinguish between
assessing UIs for design defects and understanding more subtle
design preferences. JitterWeb was constructed by introducing “jit-
ters” into web pages, that intentionally violate design guidelines.
In these cases, one might expect to more objectively identify the
preferred screen, since the alternative screen would contain a defect.
We found this case well captured by our formulation, as shown
by our models’ higher performance on the JitterWeb test data.
One technical limitation of our jittering approach is that it requires
renderable source code for UIs, which is more easily obtained for
websites (HTML, JavaScript, CSS). Although our initial results sug-
gest that design defects can be similarly detected for mobile apps,
future work could further tailor this approach to other UI toolkits.

Examples from BetterApp are more representative of design
preferences. Many of its samples were real-world apps, which are

often designed professionally and less likely to contain design de-
fects. To verify this, we analyzed design quality performance on
the subset of synthetic, LLM-generated screens within BetterApp
and compared it with the app screens from VINS. Many of the LLM-
generated screens (as shown in Figure 9) contain design defects,
which potentially led to easier comparisons. UIClip’s accuracy for
rating the quality of synthetic screens (67.65%) was much higher
than for real app screens (57.89%). This trend was true for almost
all other tested models, where the average of all models’ accuracy
on synthetic screens (56.05%) was higher than real apps (51.50%).
It is also possible that UIClip is not trained to detect certain types
of design defects present in real-world apps, e.g., violations that
require the semantic understanding of content, such as information
flow hierarchy.

Besides the nature of design defects in real-world apps, design
preferences could also vary by person and can be influenced by
standards set by tech companies. For example, it is reasonable to
expect that someone who frequently uses iOS devices might feel
more familiar with iOS screenshots over Android ones. The design
language of the same platform can change over time, causing corre-
sponding shifts in user perception, e.g., some screenshots in VINS
were from the older Rico dataset [11]. To address some of these lim-
itations, UIClip could be finetuned with user-provided preference
pairs [17] or augmented so that it incorporates platform-specific
design into its prompt, e.g., “android material design screenshot.
well-designed.” Finally, UIClip’s score is not meant to fully encapsu-
late the factors that constitute a “good design,” and our model can
sometimes misevaluate creative or bold designs that intentionally
meant to deviate from common design patterns.

7.3 Supporting UI Design Applications

Related to our problem formulation is the types of design-assistance
tasks that UIClip can support. Despite only producing a numerical
score as output, we introduced inference techniques that extend
beyond simple UI scoring and allow for a limited generation of
natural language design suggestions. We developed three example
applications that demonstrate how UIClip could facilitate some
forms of automated design assistance. While we did not conduct
formal user evaluations of our example applications, we built these
applications based on validated systems described in the literature,
which suggest they would provide value to users.

However, there are many types of design assistance that are not
yet supported by UIClip. For example, while UIClip can infer the
presence of design defects in a screenshot, there is currently no
straightforward method to localize them (e.g., footer bar has poor
color contrast). We believe this capability is important for practical
use since it provides cues for designers to address the detected
flaws. One promising approach, previously applied to other visual
design tasks [65], is to augment our current model with model
explainability frameworks to understand which parts of the image
contribute to predictions. Future iterations of the UIClip could also
be trained on sub-windows of a UI for finer-grain inference of fault
location, similar to how object detection architectures work. Finally,
UIClip could be fine-tuned with more detailed natural language
descriptions that associate spatial information with predicted flaws
(e.g., “bad color contrast in footer bar”) or even provide suggested
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fixes (e.g., “bad color contrast. make footer darker”), although this
would necessitate a more complex inference algorithm.

Recent trends in machine learning suggest that model architec-
tures that generate free-form text can be more easily scaled and
provide more flexible feedback. Our evaluation found that VLMs
generally performed poorly, and prior work suggests that LLMs are
prone to providing irrelevant design suggestions [13]. A qualita-
tive assessment of current LLM responses (Figure 6) suggests that
current LLMs produce realistic-sounding but inaccurate reasoning.
However, we believe that our work could be useful in improving
foundation models such as LVLMs. For example, the UIClip model
could be used as a “reward model” that guides their UI generation
(Section 6.1) and design assessment capabilities. Furthermore, our
datasets could be reformatted and used to fine-tune LVLMs for
UI-related tasks [40].

Finally, most machine learning models, including UIClip and
LVLMs are limited in that they can only process a single state of
the UI (i.e., a screenshot) when responding to text prompts. Because
of this limitation, our current approach focuses on assessing the
visual design of a single screen using the CRAP visual design prin-
ciples. A more holistic evaluation of both UI design and usability
depends on a deeper understanding of interface functionality and
app navigation flows, which requires both observation and inter-
action. To support this, we envision that models like UIClip, could
be integrated into interactive systems, such as crawlers, that can
interact with and explore different parts of an entire app [71, 79].

8 CONCLUSION

In this paper, we introduce a computational model called UIClip,
which is designed to automatically assess various aspects of UI
design: i) design quality, ii) UI relevance, and iii) providing design
suggestions. Our model is trained from a large-scale dataset of 2.3
million UIs that we collected and augmented with synthetic and hu-
man ratings of design quality. In an evaluation with several strong
baselines, we demonstrate our model’s performance in UI design
understanding in our three target UI tasks, showing that UIClip
outperforms all other baselines in all tasks. Finally, we introduce
three example applications that demonstrate how UIClip can facili-
tate novel applications through its automated design assessment
capabilities: i) UI code generation, ii) UI design tips generation,
and iii) quality-aware UI example search. Overall, our work consti-
tutes a first step in assessing the design of UIs using computational
modeling.
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A HYPERPARAMETERS

Table 2 provides hyperparameters for various models and algo-
rithms used in our paper. Our CLIP training hyperparameters were
based on values from the original CLIP paper [58], and were man-
ually adjusted to fit on our hardware and based on performance
observations.

B LARGE VISION-LANGUAGE MODEL

PROMPT

Below, we provide the prompt that was used to evaluate UI screen-
shots in our quantitative study. The prompt below is used to eval-
uate a screenshot of an e-commerce application and contains the
same description of CRAP guidelines that we gave to human raters.
This image contains two screenshots of user

interfaces stacked horizontally (left and right).

Both UIs can be described by the description:

An e-commerce application interface

Recall the CRAP guidelines for visual design ,

which stands for contrast , repetition , alignment ,

and proximity.

Table 2: Hyperparameters of models and algorithms used in

our paper.

Algorithm Hyperparam. Value

UIClip (JitterWeb pretraining) Batch Size 128
Epochs 1
Learning Rate 5𝑒 − 7
Weight Decay 0.2
Adam Beta 1 0.9
Adam Beta 2 0.98
Adam Epsilon 1𝑒 − 6

UIClip (JitterWeb pairwise, BetterApp) Batch Size 256
Epochs 1
Learning Rate 5𝑒 − 7
Weight Decay 0.2
Adam Beta 1 0.9
Adam Beta 2 0.98
Adam Epsilon 1𝑒 − 6

BetterApp DBSCAN Epsilon 0.1
Min samples 5
Metric Cosine Similarity

The C.R.A.P principles , coined by Robin Patricia

Williams in her non -designers ' design book , are a

set of guidelines aimed at improving the visual

appeal and effectiveness of graphic designs. These

principles are essential for creating visually

appealing and user -friendly designs. CRAP stands

for:

Contrast: This principle suggests that elements

that are not the same should be very different so

that they stand out. Using contrast can attract

the viewer 's attention and help organize

information. It can be applied through variations

in color , size , typeface , and other visual

elements.

Repetition: Repetition involves repeating some

aspect of the design throughout the entire piece.

This can include the consistent use of colors ,

fonts , and logos , which helps to create a cohesive

and harmonious look. Repetition strengthens a

design by tying together individual elements and

can enhance the overall sense of unity.

Alignment: Every element should have a visual

connection with something else on the page. This

doesn 't mean that elements always need to be in a

straight line , but rather that they should be

visually connected in a way that makes the entire

design appear well organized. Proper alignment

eliminates disorder , connects elements , and

creates a visually logical structure.

https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb
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Proximity: Items that relate to each other should

be grouped together , which helps in organizing

information and reducing clutter. By effectively

grouping related elements , the design becomes

easier to comprehend , and relationships between

elements become clearer to the viewer. Proximity

can also help in creating focal points in a design

.

Based on these guidelines , provide a response that

indicates which UI screenshot is better designed.

The first part of your response should contain

one of two choices: 'left ', 'right.' The second

part of your response should contain a comma -

separated list of which CRAP principles (if any)

are most relevant to your choice. Do not provide

explanations , and separate the first and second

part of your response with a new line.
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